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FIRST PASSAGE TIMES FOR COMBINATIONS OF RANDOM LOADS

by

P.A. Jacobs
Operations Research Department

Naval Postgraduate School
Monterey, CA 93943

0. ABSTRACT

Structures are subject to changing loads from various sources.

In many instances these loads fluctuate in time in an apparently

random fashion. Models are considered for which the stress put

on the structure by various loads simultaneously can be described

by a regenerative process. The distribution of the first time

until the stress on the structure exceeds a given level x is studied.

Asymptotic properties of the distribution are given for a large

stress level x and for the tail of the distribution for fixed

finite stress level x. Simulation results are given to assess

the accuracy of using the asymptotic results to approximate the

distribution . / ( , ,
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1. INTRODUCTION

Many physical structures are subject to varying physical

loads from various sources: wind, snow, and earthquakes being

examples. In many instances the total load experienced by a

structure varies in time in an apparently random fashion. Certain

load components, e.g. those of snow and ice accumulation, vary

rather slowly; others such as those associated with winds or

earthquakes occur more nearly as impulses. The problem is to

design structures to withstand a coincidence of such loads with

approximately a prescribed (high) probability. In engineering

terms we wish to work towards developing a rational safety factor

criterion for designing structures to withstand the combination

of loads anticipated.

In this paper we will study the time for the load combination

process, {X(t); t > 0} to exceed a given stress level for the case

in which the load combination process is a regenerative process

taking non-negative values (c.f. Cinlar [19751, page 298). Many

* of the models for load combinations that have been studied are

regenerative processes; (cf. Pearce and Wen [1983], Wen [1981],

* Shanthikumar and Sumita [1983]).

EXAMPLE 1. The load combination process is the superposition

of two load types: shock loads and constant loads. A constant

load (e.g. caused by snow or rain accumulation) exists at one

level for a random time and then changes to a new level. Let

Y(t) denote the constant load magnitude at time t. The instants

of change in the magnitude of Y(t) occur according to

1
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a renewal process with inter-renewal distribution H; successive

magnitudes of the constant load process are independent iden-

tically distributed with distribution F. Impulse or "shock"

loads (e.g. caused by wind gusts or earthquakes) occur at

random moments and have time duration of length 0. Let Z(t)

denote the shock load magnitude at time t. Given the constant

load magnitude at time t, Y(t) = y, the probability a shock

load will occur in the time interval [t,t+hI is p(y)h + o(h);

the magnitude of the shock load is conditionally independent

of everything given Y(t) = y and has distribution G(y;.).

The load combination process magnitude at time t is

X(t) = Y(t) + Z(t). {X(t); t > 0} is a regenerative process

with regeneration times the times of change of the constant

load process.

Gaver and Jacobs [1981] studied a special case of the

above model in which the interrenewal distribution H is exponen-

tial, and the shock load process is a compound Poisson process

independent of the constant load process with shock arrival

rate i and magnitude distribution function G. Other similar

load combination models have been studied in the past; cf.

Peir and Cornell [19731, Wen [1977], Pearce and Wen [1983].

Let X(t) denote the magnitude of the load combination

process at time t. The process {X(t), t > 0} is assumed to

be a regenerative process. Let

T = inf{t > 0: X(t) > x} , (1.1)

the first time the load combination exceeds a level x.

2
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Section 2 is concerned with asymptotic distribution of T

as x -co . It is shown that under certain assumptions the distri-

-1
bution of the normalized random variable T (E[T x ] ) is approximately

x

unit exponential for large x, and error bounds on the rate of

convergence are obtained. This result is related to that of

-. Keilson [1979, page 1341.

V In Section 3 the tail of the distribution of Tx for finite x,

P{T x >t}, will be studied. An asymptotic result concerning the

exponentiality of P{T x >t} for large t is given.

In Section 4 simulation results are presented to study the

accuracy of using the two.asymptotic results to approximate the

distribution of Tx.

2. THE DISTRIBUTION OF THE FIRST PASSAGE TIME
FOR THE LOAD COMBINATION PROCESS

Let {X(t); t >0} be a regenerative process taking non-negative

values representing the load combination process; [cf. Cinlar [1975],

page 298]. Let S denote the nth regeneration time; {Sn } is an n

renewal process. We will assume there is a regeneration at time

0. Let Tx be as in (1.1) and put 4(e) = E[exp(iT x)], the Fourier

transform of Tx . A renewal theoretic argument yields
x

*(F) = E[exp{iETx };Tx < Sl] + E[exp{iTx };S I < T x ]  (2.1)

- E(exp{i T };T x < S 1 ] + E[exp{iESl};S I < Tx]I(F)

Thus,

3



iET
-- E[e ;T x  < SI

iS 1 (
~1 - E[e ;S 1  < T x

xx
' 'Similarly, if m(x) = [ x ] then

m(x) = ETx ;T < S 1 + E[Tx; T > SI] (2.3)

-- = E[T ;T < S l ] + E[S ;T > S
x x x

+ P{T > S }m(x).

Therefore,

.'.-E~min(TxS I H E[min(TxS I H

"-.m(x) = "-P{Tx > Sl} P{T < S11 (2.4)
Sx

The following assumptions will be made for the remainder

of this paper.

2 ]  <
0<1 <~ E[(2.5)

lim P{T < SI } =0 (2.6)
X-IOo

It now follows from (2.4)-(2.6) that

lim m(x) = (2.7)

4
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LEMMA 1

1-1P~~x 1 jI E[S1 ;S1, < T]

2
______2_1/2_ 1/2

2E[min(S 1 1T) + 1

[ 21 1/2

I~7~f~/2 2E[min(S1 1T x

where 3(X) P[ =< S 1.

*Proof. It follows from (2.2) that there are random variables

Cand E£2 such that

__ =E~l + iET + F;T<S(2.8)
M X) m (x) x 1lT Si

x [1 - E(l + s1 + F-;2S 1< T 11-

-[P{TX< S4 + E[T ;T < SI E(E£;T <SI
x m(x) x x 1 lx-

x(P{T~ x - j-j(-7 E[S 1 ;S1 < T,~ - E[E 2 ;S1 < TI -l

-(m(x)P{T < S I +iFE(T ;T < S) + m(x)Ek 1 ;T <

[ m(x)P{T < 1 -iEEtS ;S1  T M()~ > Tx -l

(a +i~b) x (c- i~d)2

5



The difference between the Fourier transform of T (E[Tx-1
x x

and that for a unit exponential is

[(a +i~b) x (c -i~d) - I- ( -i) (2.9)

= [(a-c+2 b) + iC(b-a+d)] × [(c-i~d) (l-i )]

NUM
DEN

The term

a-c +C b = m(x)P{T x < S } + m(x)E[El;Tx < S1 ]  (2.10)

-m(x)P{T < S + m(x)E(E 2;S 1 < T ]

2+ 2E[T ;T < S
x x-

= m(x)([E[l;T x < S I ] + E[F 2 ;S1 < Tx])

+ C2 E[T ;T < SI ]x x-

It follows from (2.4) that the term

b -a +d = E[Tx;T _ - [m(x)P{T x < S I + m(x)E[cl;Tx < S1I]

+ E[S1 ;S 1 < Tx] (2.11)

6



4. - --- - -

b-a +d = EImin(T SI)] - E[min(T SI)] - m(x) E[E ;T < SI

= -m(x)E[cl;T < SI]

Thus,

INUMI= {m(x) (E[l;T < SI + E[c2 ;S I < Tx) (2.12)

+ 2E[Tx;Tx< SI + 2(-m(x)E[l;Tx < S1])

From Lemma 1 on page 512 of Feller [1971]

1 2 22
E[IE:1 I;Tx < S1< -(F 'E[T;T <S

N'- mx)) ~ x x I (2.13)

21; < TI ]  < 1 - < T1 1 (2.14)

Thus

2
1 2 2 [~S

INUMI < m Ex )(E[TT < S + ES;S < Tx) (2.15)

+ 2E[T ;T < S + 2 E[T 2 ;Tx<
x x m(x) 2 x x

Further,

Ic-i~d > 1 1 E[SI;S 1 < Tx  • (2.16)

7



. Thus

a +ib 1 JE[Sl;S 1 < TI (2.17)c i~d 1 iE

<jIi 2 2[1 S< (E[T ;T < S + E[S2;S < Tx])m(x) 2 (E xx_1

E2 1
+ I j E[T ;T x < SI] + m(x) ;T x

Application of Schwartz' Inequality yields

1 i ~11 $ 1i E[SI;Sl < Tx] (2.18)

< 1 E[S 2 + (1 + W )E[T ;T < S
1mx 1 2mx <s ).1

1 E[S 2 + (1 + ) (E[S 2 ] 1 / 2 P{T < S1/2
2m(x) [ 1] 2m(x)' 1 x 1

Let a(x) P{T< S }. Then
1

E[min(T x,S I )]
m(x) - 8( 1)(2.19)

a (x)

Thus,

1 1

- V(m-~- x) 1- i E[SI;S 1 < Tx ]  (2.20)

1ES2] 2 1/ 2  1/2
<_ a(x) 2E[min(Sl ,T)] + E[S I 1(x)

~(x)3/2 2 1/2

2E[min(Si,T)

8
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THEOREM 1. Under Assumptions (2.5)-(2.6)

STm( ) < y} - (1 -e-Y) < O(P{T 1/10

Proof. It follows from Lemma 1 that

-I ei E[exp}ix })- (l-i) -1)JE[SI;SI < Tx]  (2.21)

E 2
< I( (X) I 1 I E[S 2 ] 1 / 2  ()1/2

2E[min(Si,Tx)] + 1 8(x)

2 3/2 E[S2]1/2
2E[min(Si,Tx

where a(x) = P{T x < S1 } as before.

Thus, applying Lemma 2 on page 538 of Feller [1971] for
T 6 (x)- 1/5

-1//5

Tr P{T x < y< - (i-e-Y)l < 248(x)

2E[S2

+ E[SI;S 1 < T]{(x)-2/[(x) 2E[m1in(SiTx) + E[S2] /2 (x)I/2]

,[ 2 1/2

+ a(x) 3/ 5 2 a(x))3/2 2E[min( 1l,Txf "

The result now follows.

49
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EXAMPLE. In Example 1

x
B(x) = F(x) + f F(dy) f H(dt) [1 -exp{-ji(y)G(y,x-y)t}]

0 0

X A

= 1 - f F(dy)h(p(y)G(y,x-y)) (2.22)
0

A00

where h(s) = f e-stH(dt) is the Laplace transform of H and
0

F(t) = 1 - F(t). If C and S are two independent random variables

having distributions F and H respectively, then

B = 1 - E[exp {- (C)G(C,x-C)S};C < x] (2.23)

Consider two independent load combination processes

{Xl(t);t > 0} and {X2 (t);t > 0} of the type in Example 1.

Assume that the conditional distribution of the shock load process,

given the constant load process, is the same for both load combination

processes; the constant load magnitudes have distributions F1

and F2 respectively with Fl(t) < F2(t); and the times between

constant load changes have distributions H1 and H2 respectively

with Hl(t) < H2(t). Let Ci and S. have distributions Fi and

H. respectively for i 1,2. If y p (y)G(y,x-y) is an1

increasing function of y for y < x, then

-H (cI  G( 1,x-CI  SI
Bl(x) - 1 - E[e C 1 <_ x]

01
2 10

0".



-1 (C 2 ) G(C 2 ,X - C 2 ) s 2

-l(x) 1 - E[e ;C < x)

2(x) (2.24)

Thus, Theorem 1 suggests that the convergence to exponential

of the distribution of the time for the load combination process

to exceed a level x is faster for load combination process 1

than that for process 2. This behavior has been seen in the

simulation studies reported in Section 4.

3. THE TAIL OF THE DISTRIBUTION OF T FOR FINITE x* x

In this section we will study the behavior of P{T > t}x

for finite x and large t. The probability, P{T > t},x

satisfies the following renewal equation

t
P{T x > t} P{S 1 > t,Tx > t} + f Lx (du)P{Tx > t-u (3.1)

0

where

L (t) = P{S < t,T x > S1 }  (3.2)x 1>--S " 32

We will assume Lx (0) = 0.

Following the argument on page 376 of Feller [19711 we

will assume that for each x there exists a constant K(x) such

that

11



'00

0f e Lx (du) =1 ,(3.3)

0 X

is finite, and the function

g(t) = e KxtP{S 1 > t,T x> t} (3.5)

is directly Riemann integrable.

It now follows from the Key Renewal Theorem that

-.- lim eK W~t P{T > =) () fg(t)dt .(3.6)

Since g is assumed to be directly Riemann integrable,

* integrating (3.3) by parts yields

1 P{x >S 1+ Kx) fC e K(X)t P{S1 > t,T x> S }dt. (3.7)

0

Thus

K(X) = {X~~l ~(3.8)

00

a - - .A4JLAt



It follows from (2.4) that

K~~mx)=E[min(T x 'S 1)(9

0

The defining equation for K(x), (3.3), (3.8), and (2.6)

imply that as a function of X, K(X) is nonnegative and decreasing

with lim K(x) = 0. If it is further assumed that there

xits0 > 0 such that Ee I < , then it follows from the

dominated convergence theorem and (3.9) that

lim. K(x)m(x) E1 .(3.10)

x-*-0t

EXAMPLE. In Example 1, assume that ff(t) =e ,

p(y) p , and G(y,x) G(x). Then K(x) satisfies the equation

1= f F(dy) (3.11)
0 A + jjG (x-y) -K(X)

where ZG(x) =1-G(x).

Further,

g* (t) f 0 ~~ e- e-Z(Yt F(dy)

Thus

13



x 11
Sgx(t) dt= f F(dy) - (3.12)0 0 X + 1G (x-y) K (X) ""

Therefore,

lrn eK(x)P{Tx > t} = (3.13)

where

S x K(X -t -(x-y)t

y(x) f f F(dy) t e ( x e  e at
0 0

f f F(dy) A(3.14)

0 (A + ZG(x-y) - K(X)) 2

If it is further assumed that A = = , then it follows

from (3.9) and (3.11) that

x1

f F(dy)

K (x)m(x) 0 1 +G(x-y) (3.15)
x1

f F(dy) 10 1 +G(x-y) -K (x)

x
< J F(dy)

0 1 +G(x-y)

1
Thus K(X) < 1 in this case.

14



* In the further special case in which F(x) = G(x) =eX,-

and j = 1, K(x) satisfies the equation

x
1 =f(K(X)) f e-' dy (3.15)

0 1l+e K Wx

* where

1 x -x
f(l) = f1e -e I(3.16)

and for y 3l1such that0<y <lI-e-

2 -x - x-x-x
f(y)(1-y) =(1-y)(1-e x)-e x[ln((1-y)+e- )-ln((1-y)e x+e )H

(3.17)

* Further,

y(X) f - (x-y) _ 2e dy; or
0 (1 +e K(X)

3 x -x -x)
-y(X) (l-K(X)) =(1- :(x)) (1-e )-2e [ln((1-K(x))+e

- n((1-K(x))Xe) (3.18)

15



". 4. A SIMULATION STUDY OF THE ACCURACY OF THE EXPONENTIAL
APPROXIMATIONS TO THE FIRST PASSAGE TIME DISTRIBUTION

In this section some results of a simulation study of the

accuracy of using the asymptotic results of Sections 2 and 3

, Y to approximate the distribution of Tx are reported. All

simulations were carried out on an IBM 3033 computer at the

Naval Postgraduate School using the LLRANDOM II random number

* -generating package (see Lewis and Uribe (1981)).

The model of Example 1 was simulated for various cases

of distributions H, F, G and shock arrival rate p. Each

realization simulated the sample path of the process {X(t);

t > 0} and the first passage times 0 < T < T < .. < T_~~ _x-x 2 - n

were recorded for several levels xI < x 2 < ... < xn. The number

of replications was 5,000. Sample moments and quantiles were

computed for each T . A more detailed account of the simula-
x

tion can be found in Noh (1984).

4.1 The Exponential Approximation P{T x > t} exp{-E[Tx It}

a. Model A

Tables 1-1, 1-2 and 1-3 report the simulation results

for the model in which H = F = G are all unit exponential and

1 1. Table 1-1 reports simulated sample mean and coefficient

of variation for T for various levels of x. As expected,
x

the simulated coefficient of variation approaches the exponen-

tial distribution's value of 1 as x gets larger. To assess

the quality of the exponential approximation 1 - exp{E[T x]I t}

to the distribution of Tx, quantiles from the simulated data

• were computed and compared to the approximating exponential

16
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TABLE 1-1

Simulated Moments for T x in the Case F =G =H =exp(l) and j

x-Level E[T ICoeff Var[Tx x

0.50 0.276 1.984
* (0.01)

1.00 0.669 1.451
(0.014)

2.00 2.000 1.177
(0.033)

3.00 4.878 1.080
LI (0.074)

*4.00 11.539 1.024
(0.167)

5.00 26.945 1.002
(0.382)

is the standard error of the mean

17



quantile q

q = -E[T ] in(l- ) (4.1)

where for this model E[T I can be computed analytically and is
x

found in Gaver and Jacobs [1981]. Table 1-2 reports the

simulated quantiles with the approximating exponential quantiles

below in parentheses. As expected, the exponential approxi-

mation is better for the large level x = 5 than for x = 0.5.

The approximation is also better for a > 0.5.

One way the distribution of Tx differs from an exponential

is that it has an atom at 0; in particular for the model A
P{T = 01 1 - F(x) = e-x. The sample quantiles for the

x

simulated conditional distribution of Tx given Tx > 0 appear

in Table 1-3. Below the simulated quantiles in parentheses

appear approximating exponential ones computed as

q c -E[T x

a P{T > O in (l-) (4.2)x

The quantiles of the simulated conditional distribution

are much closer to their exponential approximation than those

for the unconditional distribution.

b. Model B

Tables 2-1, 2-2, and 2-3 report simulation results for

the model which is the same as Model A except that the distri-

bution of the constant load magnitudes F is exponential with

mean 1/2. The simulated means and coefficient of variations

18
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TABLE 2-1

Simulated Moments for Model B

Level x E[T ] Coeff Var[T x

0.5 0.577 1.453
*(0.010)

1.0 1.329 1.144
(0.022)

2.0 3.980 1.036
(0.058)

e

3.0 10.530 1.006
(0.150)

4.0 28.014 0.997
(0.395)

5.0 75.425 1.003
(1.070)

*( ) is the standard error of the sample mean
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appear in Table 2-1. An analytical expression for E[T for
x

this model appears in Gaver and Jacobs [1981]. This expression

is used in the approximating quantiles (4.1) and (4.2). The

approximating quantiles for the conditional distribution of T
x

*given Tx > 0 which appear in Table 2-3 are closer to their

corresponding simulated quantiles than the approximating quan-

- . tiles for the unconditional distribution. Comparison of

- .Tables 2-2 and 2-1 for the x > 2 and a < 0.3 suggests that the

distribution of T is converging faster to an exponential for
x

Model B than for Model A. It follows from (2.2) that P{T x < S

is smaller for Model B than for Model A. Thus, Theorem 1

suggests that the convergence of the distribution of T to

exponential should be faster for Model B than for Model A.

4.2 The Exponential Approximation 1 e-K(X)t

y(x)

In this subsection simulation will be used to study the

exponential approximation suggested by the asymptotic result

(3.6). This is an approximation for P{T x > t} for fixed finite

x; it should be more accurate for t large.

Two cases of Model 1 were simulated. In both cases, shock

loads arrive according to a Poisson process with rate 1 and

constant loads change magnitude at the times of arrival of a

o" Poisson process with rate 1; the shock level magnitudes have

• an exponential distribution with mean 1. In Case A, the dis-

tribution of the constant load magnitude is exponential with

mean 1; in Case B, it is exponential with mean 1/2.

In both cases considered, it is possible to determine

*. analytical expressions for the integrals determining (x) and
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y(x). The value for K(x) was found numerically. Values of

<(x) and y(x) for the two models can be found in Tables (3-1)

and (4-1). Note that as x increases <(x) decreases and
-i

approaches E[T x ]  . As x increases y(x) decreases and approaches
x

-i
1. As expected K(x) < E[T Ix ]  for all levels of x.

To assess the accuracy of the exponential approximation,

quantiles of the simulated data were computed. These quantiles

appear in Tables (3-2) and (4-2). For each level x, the first

row gives the simulated quantile, the second row gives the

approximating exponential quantile

1
Q*= ln(y(x)(l-a)) ; (4.3)

OL K(x)

and the third row gives the approximating exponential quantile

+

Q = -E[T I ln(l-a). (4.4)
xu

The exponential approximation (4.3) is in general closer

to the simulated quantile than (4.4). However the two approxi-

mations become closer as x gets larger. As expected (4.3)

approximates well the simulated quantile Q for a > 0.75 for

all values of x. However if x is sufficiently large (4.3)

approximates fairly well the simulated Q( for a as small as 0.1.

A comparison of Tables (3-2) and (4-2) suggests once again that

the convergence of the distribution of T to exponential is

x

faster for Model B than for Model A.
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TABLE 3-1

values of <(x) and y(x) for Model A

Level x K (X) E[T F1 Y (X)

0.2 1.708 9.492 5.942

0.4 1.459 4.486 3.254

0.6 1.247 2.814 2.364

0.8 1.066 1.977 1.923

1.0 0.912 1.475 1.670

1.2 0.780 1.142 1.502

1.4 0.667' 0.906 1.386

1.6 0.570 0.730 1.303

1.8 0.487 0.596 1.238

2.0 0.417 0.491 1.193

2.2 0.355 0.407 1.155

2.4 0.303 0.339 1.125

2.6 0.259 0.284 1.102

2.8 0.221 0.238 1.085

3.0 0.188 0.201 1.068
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TABLE 4-1

Values of <(x) and y(x) for Model B

Level x K(x) E[T IY(X)x

0.2 1.563 4.760 3.109

0.4 1.237 2.265 1.860

0.6 0.975 1.433 1.400

0.8 0.801 1.015 1.286

1.0 0.650 0.762 1.183

1.2 0.531 0.592 1.122

1.4 0.435 0.470 1.084

1.6 0.358 0.378 1.059

1.8 0.296 0.306 1.044

2.0 0.244 0.250 1.032

2.2 0.199 0.204 1.019

2.4 0.166 0.168 1.017

2.6 0.136 0.138 1.011

2.8 0.112 0.113 1.007

3.0 0.092 0.093 1.005
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